HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Inhibition of tumor angiogenesis in vivo by a monoclonal antibody targeted to domain 5 of high molecular weight kininogen
نویسندگان
چکیده
We have shown that human high molecular weight kininogen is proangiogenic due to release of bradykinin. We now determined the ability of a murine monoclonal antibody to the light chain of high molecular weight kininogen, C11C1, to inhibit tumor growth compared to isotypematched murine IgG. Monoclonal antibody C11C1 efficiently blocks binding of high molecular weight kininogen to endothelial cells in a concentration-dependent manner. The antibody significantly inhibited growth of human colon carcinoma cells in a nude mouse xenograft assay and was accompanied by a significant reduction in the mean microvascular density compared to the IgG control group. We also showed that a hybridoma producing monoclonal antibody C11C1 injected intramuscularly exhibited markedly smaller tumor mass in a syngeneic host compared to a hybridoma producing a monoclonal antibody to the high molecular weight kininogen heavy chain or to an unrelated plasma protein. In addition, tumor inhibition by purified monoclonal antibody C11C1 was not due to direct antitumor effect because there was no decrease of tumor cell growth in vitro in contrast to the in vivo inhibition. Our results indicate that monoclonal antibody C11C1 inhibits angiogenesis and human tumor cell growth in vivo and has therapeutic potential for treatment of human cancer. (Blood. 2004;104:2065-2072)
منابع مشابه
HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY A monoclonal antibody against CD148, a receptor-like tyrosine phosphatase, inhibits endothelial-cell growth and angiogenesis
Angiogenesis contributes to a wide range of neoplastic, ischemic, and inflammatory disorders. Definition of the intrinsic molecular controls in angiogenic vessel growth promises novel therapeutic approaches for angiogenesis-related diseases. CD148 (also named DEP-1/PTP ) is a receptor-like protein tyrosine phosphatase that is abundantly expressed in vascular endothelial cells. To explore a role...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth
متن کامل
Kininostatin, an angiogenic inhibitor, inhibits proliferation and induces apoptosis of human endothelial cells.
We recently reported that domain 5 (D5) of high-molecular-weight kininogen inhibited critical steps required for angiogenesis. Thus, it was named kininostatin. To understand its mechanism of action, we further investigated the effects of D5 on basic fibroblast growth factor (bFGF)-induced endothelial cell proliferation and cell viability. We report here that D5-inhibited cell proliferation of h...
متن کاملHigh-molecular-weight kininogen fragments stimulate the secretion of cytokines and chemokines through uPAR, Mac-1, and gC1qR in monocytes.
OBJECTIVE Plasma high-molecular-weight kininogen (HK) is cleaved in inflammatory diseases by kallikrein to HKa with release of bradykinin (BK). We postulated a direct link between HKa and cytokine/chemokine release. METHODS AND RESULTS HKa, but not BK, releases cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, and chemokines IL-8 and MCP-1 from isolated human mononucl...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Inhibition of the von Willebrand (VWF)–collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons
The interaction between collagen, von Willebrand factor (VWF), and glycoprotein Ib is the first step in hemostasis and thrombosis especially under high shear conditions. We studied the inhibition of the VWF-collagen interaction by using an antihuman VWF monoclonal antibody 82D6A3 to prevent arterial thrombosis in baboons to develop a new kind of antithrombotic strategy and determine for the fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004